

Safe, secure, permanent CO₂ storage

Carbon storage projects inject carbon for permanent storage thousands of feet underground, where it is sealed in place by layers of impermeable rock often hundreds of feet thick. Before selecting a carbon storage site, extensive testing is conducted to ensure optimal geological conditions for injection.

ExxonMobil uses several monitoring methods to continuously assess stored CO₂ and collects water samples above the storage area to confirm the CO₂ has remained in place. Subsurface imaging is conducted periodically throughout the life of the project to further verify injected CO₂ remains in place.

- ① CO₂ injection wells are constructed of double-walled, corrosion-resistant materials designed specifically to handle CO₂ and cemented to prevent CO₂ from moving outside of the well.
- ② CO₂ is stored in porous formations thousands of feet below sources of water.
- ③ The injected CO₂ is held in place by multiple layers of thick, impermeable seal rock thousands of feet underground, similar to the seal rock that has kept oil, natural gas and naturally occurring CO₂ underground for millions of years.
- ④ Monitoring wells continuously assess pressure and temperature of injected CO₂ plume.
- ⑤ Water quality is tracked in the formations above the injection zone in shallow groundwater reservoirs to ensure no impact.
- ⑥ Acoustic monitors periodically assess the subsurface geology and track the injected CO₂.
- ⑦ Monitors above the CO₂ storage zone help confirm that the CO₂ has remained in place.

Representative depiction of subsurface geology and monitoring.